تا به امروز نرم افزارهای تجاری و آموزشی فراوانی برای داده کاوی در حوزه های مختلف داده ها به دنیای علم و فناوری عرضه شده اند. هریک از آنها با توجه به نوع اصلی داده هایی که مورد کاوش قرار میدهند، روی الگوریتمهای خاصی متمرکز شده اند. مقایسه دقیق و علمی این ابزارها باید از جنبه های متفاوت و متعددی مانند تنوع انواع و فرمت داده های ورودی، حجم ممکن برای پردازش داده ها، الگـوریتمهای پیاده سـازی شده، روشهای ارزیابی نتایج، روشهای مصـور سـازی، روشهای پیش پردازش داده ها، واسطهای کاربر پسند، پلتفرمهای سازگار برای اجرا،قیمت و در دسترس بودن نرم افزار صورت گیرد. از آن میان، نرم افزار Weka با داشتن امکانات بسیار گسترده،امکان مقایسه خروجی روشهای مختلف با هم، راهنمای خوب، واسط گرافیگی کارا، سازگاری با سایر برنامه های ویندوزی، و از همه مهمتر وجود کتابی بسیار جامع و مرتبط با آن [Data Mining, witten et Al. 2005 ] ، معرفی میشود.
1- معرفی نرم افزار Weka
میزکارWeka ، مجموعهای از الگوریتمهای روز یادگیری ماشینی و ابزارهای پیش پردازش دادهها میباشد. این نرمافزار به گونهای طراحی شده است که میتوان به سرعت، روشهای موجود را به صورت انعطافپذیری روی مجموعههای جدید داده، آزمایش نمود. این نرمافزار، پشتیبانیهای ارزشمندی را برای کل فرآیند داده کاوی های تجربی فراهم میکند. این پشتیبانیها، آماده سازی دادههای ورودی، ارزیابی آماری چارچوبهای یادگیری و نمایش گرافیکی دادههای ورودی و نتایج یادگیری را در بر میگیرند. همچنین، هماهنگ با دامنه وسیع الگوریتمهای یادگیری، این نرمافزار شامل ابزارهای متنوع پیش پردازش دادههاست. این جعبه ابزار متنوع و جامع، از طریق یک واسط متداول در دسترس است، به نحوی که کاربر میتواند روشهای متفاوت را در آن با یکدیگر مقایسه کند و روشهایی را که برای مسایل مدنظر مناسبتر هستند، تشخیص دهد.
عنوان پایان نامه : وب کاوی در صنعت
قالب بندی : Word
شرح مختصر : با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به دادهها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویسهای وب می پردازد. در واقع وب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند. طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.
فهرست :
مقدمه
فصل دوم: داده کاوی
مقدمه ای بر داده کاوی
چه چیزی سبب پیدایش داده کاوی شده است؟
مراحل کشف دانش
جایگاه داده کاوی در میان علوم مختلف
داده کاوی چه کارهایی نمی تواند انجام دهد؟
داده کاوی و انبار داده ها
داده کاوی و OLAP
کاربرد یادگیری ماشین و آمار در داده کاوی
توصیف داده ها در داده کاوی
خلاصه سازی و به تصویر در آوردن داده ها
خوشه بندی
تحلیل لینک
مدل های پیش بینی داده ها
دسته بندی
رگرسیون
سری های زمانی
مدل ها و الگوریتم های داده کاوی
شبکه های عصبی
درخت تصمیم
Multivariate Adaptive Regression Splines(MARS)
Rule induction
Knearest neibour and memorybased reansoning(MBR)
رگرسیون منطقی
تحلیل تفکیکی
مدل افزودنی کلی (GAM)
Boosting
سلسله مراتب انتخابها
داده کاوی و مدیریت بهینه وب سایت ها
دادهکاوی و مدیریت دانش
فصل سوم: وب کاوی
تعریف وب کاوی
مراحل وب کاوی
وب کاوی و زمینه های تحقیقاتی مرتبط
وب کاوی و داده کاوی
وب کاوی و بازیابی اطلاعات
وب کاوی و استخراج اطلاعات
وب کاوی و یادگیری ماشین
انواع وب کاوی
چالش های وب کاوی
مشکلات ومحدودیت های وب کاوی در سایت های فارسی زبان
محتوا کاوی وب
فصل چهارم: وب کاوی در صنعت
انواع وب کاوی در صنعت
وب کاوی در صنعت نفت، گاز و پتروشیمی
مهندسی مخازن/ اکتشاف
مهندسی بهره برداری
مهندسی حفاری
بخشهای مدیریتی
کاربرد های دانش داده کاوی در صنعت بیمه
کاربردهای دانش داده کاوی در مدیریت شهری
کاربردهای داده کاوی در صنعت بانکداری
بخش بندی مشتریان
پژوهش های کاربردی
نتیجه گیری
منابع و ماخذ فارسی
مراجع و ماخذ لاتین و سایتهای اینترنتی