زپوها

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

زپوها

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

استراتژی کنترل توان راکتیو DFIG مزارع بادی بمنظور تنظیم ولتاژ شبکه قدرت

 استراتژی کنترل توان راکتیو DFIG مزارع بادی بمنظور تنظیم ولتاژ شبکه قدرت


عنوان انگلیسی:

Reactive Power Control Strategy of DFIG Wind Farms for Regulating Voltage of Power Grid


ناشر:PES General Meeting | Conference & Exposition, 2014 IEEE

تعداد صفحات انگلیسی:5

تعداد صفحات فارسی:14

Abstract

If a wind farm is weakly connected to a power grid, then the voltage of the connection point fluctuates frequently due to the changeable wind speed. The active and reactive power of a doubly-fed induction generator (DFIG) can be decoupling controlled and the grid-side converter (GSC) of a DFIG can also generate some reactive power by adjusting the power factor, thus a DFIG can be considered as a reactive power resource to stabilize the voltage of the connection bus. Based on the power relationship of a DFIG, the up and down reactive power limitations of DFIG stator and GSC are analyzed. Then a reactive power control strategy of a DFIG wind farm is proposed, in which, a certain number of DFIGs are selected to support reactive power to the power grid when the voltage of the connection point drops. The control strategy aims at bringing the reactive power capability of DFIG into play and cutting down the investments in the reactive power compensation devices which are used less. The simulation model of a grid-connected DFIG wind farm is developed on the PSCAD/EMTDC platform, and the simulation results demonstrate the effectiveness of the control strategy proposed

 

چکیده:

اگر یک مزرعه بادی بطور ضعیفی به شبکه وصل شود آنگاه بخاطر تغییرپذیری سرعت باد‏‏‏٬ ولتاژ نقطه اتصال بطورمکرر تغییر میکند. توان اکتیو و راکتیو ژنراتور القایی دو سو تغذیه(DFIG) را میتوان بطور جداگانه کنترل کرد وهمچنین کانورتر سمت شبکه(GSC) یک DFIG میتواند با تنظیم ضریب قدرت مقداری توان راکتیو تولید کند. بدین صورت DFIG را میتوان بعنوان  یک منبع تولید کننده توان راکتیو برای پایداری ولتاژ باس اتصال در نظر گرفت. براساس رابطه توانDFIG  ٬حد بالا وپایین توان راکتیو استاتور DFIG و GSC تحلیل میشوند.سپس یک استراتژی برای کنترل توان راکتیو مزارع بادی پیشنهاد میشود که در آن تعدادی از DFIG ها برای تامین توان راکتیو شبکه قدرت زمانی که ولتاژ نقطه اتصال کاهش پیدا میکند انتخاب میشوند.هدف از استراتژی کنترل توان راکتیو٬ استفاده از توانایی DFIG در تولید توان راکتیو و کاهش سرمایه گذاری های مربوط به ادوات تزریق توان راکتیو که کمتر مورد استفاده قرار میگیرند است.مدل شبیه سازی DFIG مزرعه بادی متصل شده به شبکه در سکو PSCAD/EMTDC  توسعه داده میشود. نتایج شبیه سازی موثر بودن استراتژی کنترلی پیشنهاد داده شده را تایید میکنند.

فهرست مطالب

1.چکیده

2.مقدمه(تعداد مزارع بادی که به شبکه قدرت متصل میشوند روز به زور بیشتر میشود. بدلیل اینکه اکثر مزارع بادی در مناطق دور یا دردریا قرار دارند خطوط انتقال طولانی برای اتصال آنها به شبکه ..........)

3.

مشخصه توان راکتیو توربین بادیDFIG

(

توپولوژی یک DFIG در شکل یک نشان داده شده است.

)

4.

محدودیت های توان راکتیو کانورتر سمت شبکه(کانورترسمت شبکه وسمت رتور فقط توان اکتیو را انتقال میدهند در حالی که توان راکتیو ...)

5.محدودیت های توان راکتیو استاتورDFIG

(

بر اساس جهت بردار ولتاژ شبکه٬ جریان روتور بصورت زیر بیان می شود.....

)

6.

استراتژی کنترل توان راکتیو DFIG مزارع بادی(از آنجایی که توربین های بادی DFIG توانایی جذب و تولید توان راکتیو دارند بنابراین DFIG یک مزرعه بادی نه تنها میتواند توان اکتیو تولید ........)

7.نتیجه گیری(ابن مقاله حدهای توان راکتیو یک توربین بادی DFIG را بصورت کمی آنالیز کرد ویک استراتژی کنترل توان راکتیو بسیار انعطاف پذیر برای DFIG مزرعه بادی متصل شده ...)


خرید و دانلود  استراتژی کنترل توان راکتیو DFIG مزارع بادی بمنظور تنظیم ولتاژ شبکه قدرت


مقاله تحلیل فرکانس شبکه با موضوع نفوذ توان باد زیاد

 مقاله تحلیل فرکانس شبکه با موضوع نفوذ توان باد زیاد


عنوان انگلیسی:
Grid Frequency Analysis with the Issue of High Wind Power Penetrationعنوان فارسی:
تحلیل فرکانس شبکه با موضوع نفوذ توان باد زیاد

ناشر :IEEE-International Conference on Electrical Information and Communication Technology

سال انتشار:2013

تعداد صفحات ترجمه: 19 بصورت word

تعداد صفحات انگلیسی:6 بصورت pdf

Abstract
As wind turbine output is proportional to the cube of wind speed, the wind turbine generator output fluctuates due to random variations of wind speed. Hence, if the power capacity of wind power generator becomes large, wind power generator output can have an influence on the power system frequency. Therefore, this study investigates the influence of the ratio of wind capacity to the power system capacity, on the power system frequency. To do this, a 100[MVA] thermal synchronous generator (SG) is considered and the total capacity of wind power induction generator (IG) increases as 3[MVA], 5[MVA] and 10[MVA] connected to the line. It is seen that the system frequency fluctuation is more severe for 10% capacity of wind power penetration. Again, a hydro generator to the same capacity that of the thermal generator of 100[MVA] is considered and IG capacity increases as before. In this case, it is seen that the system frequency fluctuation is more severe for 10% capacity of wind power. However, SGs total capacity of 100[MVA] is considered combined with 50[MVA] thermal generator and 50[MVA] hydro generator and IG capacity increases as before. In this case, it is also seen that the system frequency fluctuation is more severe for 10% of total wind power capacity. For this reason , as the wind power penetration increases rapidly nowadays for its clean, non-polluting and renewable energy, this study will be helpful for taking preventive measures for the power grid operators to improve the stability and quality of electric power. Considering these point of view, this study plays a vital role for power system applications


چکیده:
با توجه به اینکه خروجی توربین بادی متناسب با توان سوم سرعت باد است بنابراین خروجی ژنراتور توربین بادی بعلت تغییرات تصادفی سرعت باد تغییر میکند و از آنجایی که اگر توان ژنراتور بادی زیاد شود خروجی ژنراتور بادی می تواند بر روی فرکانس سیستم قدرت تاثیر بگذارد بنابراین این مقاله تاثیر نسبت ظرفیت باد به ظرفیت سیستم قدرت بر روی فرکانس سیستم قدرت را بررسی میکند.برای انجام این کار یک ژنراتور سنکرون حرارتی 100 مگا ولت آمپری در نظر گرفته میشود و کل ظرفیت ژنراتور القایی توان بادی متصل به شبکه بصورت5،3و 10 مگا ولت آمپر افزایش پیدا میکند.مشاهده میشود که برای نفوذ ظرفیت توان بادی 10 درصد توان کل، تغییرات فرکانس سیستم خیلی زیاد است و بار دیگر یک ژنراتور آبی با همان ظرفیت 100 مگا ولت آمپر ژنراتور حرارتی، در نظر گرفته میشود و طرفیت ژنراتور القایی مانند قبل افزایش پیدا میکند مشاهده میشود که برای 10درصد ظرفیت توان کل،تغییرات فرکانس خیلی زیاد است . با وجود این فرض میشود که کل ظرفیت 100 مگا ولت آمپری SGs از ترکیب یک ظرفیت 50 مگا ولت آمپری ژنراتور حرارتی ویک ظرفیت 50مگا ولت آمپری ژنراتور آبی بدست می آید و ظرفیت ژنراتور القایی مانند گذشته افزایش پیدا میکند.در این حالت مشاهده میشود که برای 10درصد کل ظرفیت توان ، تغییرات فرکانس سیستم خیلی بیشتراست.به این دلیل همانطوری که امروزه نفود توان باد بخاطر پاک بودن،فاقد آلودگی بودن و تجدید پذیر بودن به سرعت افزایش پیدا میکند این مطالعه نیز بمنظوراقدامات پیشگیرانه اپراتورهای شبکه قدرت برای بهبود پایداری و کیفت توان الکتریکی مفید خواهد بود.با توجه به این نقطه نظر این بررسی یک نقش مهم برای برنامه های کاربردی سیستم قدرت دارد.


خرید و دانلود  مقاله تحلیل فرکانس شبکه با موضوع نفوذ توان باد زیاد


پروژه دسته بندی اختلالات کیفیت توان با استفاده از تبدیل ویولت و شبکه عصبی

 پروژه دسته بندی اختلالات کیفیت توان با استفاده از تبدیل ویولت و شبکه عصبی


توضیحات :

در پروژه دسته بندی اختلالات کیفیت توان با استفاده از تبدیل ویولت و شبکه عصبی تلاش شده تا با ابزارها و روشهای نوین پردازش سیگنال (تجزیه چند سطحی ویولت DWT) وهمچنین روش های دسته بندی هوشمند (شبکه های عصبی) انواع اختلالات کیفیت توان شناسایی ودسته بندی شوند.

فهرست مطالب :

فصل اول: کیفیت توان

کیفیت توان وضرورت توجه به آنبررسی مشخصات شکل موجانواع اختلالات کیفیت توان و اثرات آن بر تجهیزات مختلفهارمونیک ها (Harmonic)فیلیکر(Flicker)عدم تعادل ولتاژشکاف(Notch )نویز (Noise)پدیده های گذرا(Transient Phenomena)تغییرات فرکانسکمبود ولتاژ(sag)بیشبود ولتاژ یا اضافه ولتاژ(Swell)قطع ولتاژ (Interruption)دستگاه های از بین برنده کیفیت توانراه های بهبود کیفیت توان

فصل دوم: تبدیل موجک(Wavelet)

مقدمهتبدیلدلایل استفاده ازتبدیلآنالیز چند رزولوشنهتبدیل ویولت یک بعدیتبدیل ویولت پیوستهرزولوشن در صفحه زمان فرکانسروابط ریاضی تبدیل ویولتعکس تبدیل ویولتگسسته سازی تبدیل ویولت پیوستهتبدیل ویولت گسسته

فصل سوم :شبکههای عصبی مصنوعی (Artificial Neural Network)

مقدمهتاریخچهانواع شبکه عصبیایده شبکه‌های عصبی مصنوعی (Artificial Neural Network – ANN)نرون مصنوعیساختار شبکه‌های عصبیلایه ورودیلایه‌های پنهان(میانی)لایه خروجیانواع اتصالات یا پیوندهای وزنیپیشرو(feed forward)پسرو(recurrent)تقسیم بندی شبکه‌های عصبیشبکه‌های عصبی در مقایسه با کامپیوترهای سنتیدلایل استفاده از شبکه های عصبیمزایای شبکه‌های عصبیمعایب شبکه‌های عصبیکاربردهای شبکه های عصبییادگیری در شبکه های عصبیفرایند یادگیریمعادله یادگیری در حالت کلییادگیری شبکهانواع یادگیریالگوریتم پس انتشار خطا(Back-Propagation)الگوریتم LM درشبکه های عصبیالگوریتمهای بهینه سازیروش تندترین شیبنرخ های یادگیری پایدار (Stable  Learning rates)مینیمم سازی در طول یک خطروش نیوتنالگوریتم (LM(Levenberg-Marquardtالگوریتم اساسی (Basic Algorithm)شاخص عملکرد و محاسبه ژاکوبینشبکه عصبی احتمالی(PNN)مزایای شبکه عصبی احتمالیمعایب شبکه عصبی احتمالیتئوریتخمین تابع چگالی احتمالآموزش شبکه عصبی احتمالی

فصل چهارم: فرآیند تحقیق

مقدمهشرح فرآیند تحقیقجدول نتایجمقایسه با دیگر روش هاشبیه سازی کوره قوس القاییکوره قوس الکتریکینتیجه نهایی تحقیقمنابع ومراجع

فرمت فایل : pdf

تعداد صفحات : 120


خرید و دانلود  پروژه دسته بندی اختلالات کیفیت توان با استفاده از تبدیل ویولت و شبکه عصبی